美国费米实验室的最新 μ 子试验结果对物理学有多大颠覆?粒子的标准模型有被「推翻」的风险吗? | 子乾
关注风云之声
提升思维层次
导读
此次μ子的结果如果能够被确认,那么对于下一步高能物理的发展方向、探索超出标准模型的新物理提供重要指导。若有幸真的与暗物质能扯上关系,那么这将会大大增加我们对宇宙的认知,毕竟宇宙中暗物质的含量是普通可见物质的五倍还多!
目
录
为什么是μ子而不是电子?
新物理在哪?
精细测量的意义
1、为什么是μ子而不是电子
QCD真空中的量子涨落(图[1])
2、新物理在哪?
3、精细测量的意义
海王星的发现。人们在发现天王星之后,开始测量其运动轨道,可是,观测了一个时期以后,却发现天王星是一个“性格很别扭”的行星。因为別的大行星都循着科学家推算出来的轨道绕太阳运行,只有天王星有点不安分,它在绕太阳运行的时候,老是偏离它应走的路线[3]。行星之间的万有引力会影响他们的轨道,经过仔细计算之后,推算,太阳系中还存在另一颗没有被发现的行星,影响了天王星的运动轨迹。1846年9月23日,德国天文学家伽勒用望远镜看到了法国天文学家勒威耶和英国天文学家亚当斯同时独立地用天体力学理论所算出的一个当时尚未发现的新行星,这就是海王星[3]。
水星进动。按照牛顿万有引力定律,行星绕太阳运动轨迹是一个封闭的椭圆,不会发生变化。但是对水星运动轨迹的精确测量发现,它的轨道在逐渐变化,长轴也在缓慢的转动,即进动现象,速率为每百年1°33′20",然而根据牛顿理论计算得到结果为每百年1°32′37",即使考虑了其它行星带来的影响,理论依然与实验不相符。这最早是在1859年被法国天文学家勒维耶发现。直到广义相对论建立起来之后,这一现象才被很好地解释,水星进动问题也是验证广义相对论的主要现象之一。
万有引力常数
。对电磁相互作用我们能测得很精确(比如电子磁矩),那么引力自然地也要测得精确一点。其中万有引力常数 其中很关键的量,对这一量的精确测量一直在持续,但是由于万有引力本身很弱,因此测量误差一直很大。很多不同实验结果也有明显差距。相对于电磁力的精确结果,可以说,我们对万有引力了解的很粗糙。
2000年之后部分测量的结果(图[4])
希格斯粒子。2013年发现希格斯粒子可以说标准模型的巨大成功,但是我们对希格斯粒子的了解几乎只有“存在希格斯粒子,质量为125GeV”,它的很多细节和性质我们并不怎么了解,甚至都不知道它是不是基本粒子。作为标准模型中费米子质量的来源,我们理应对其有更进一步的认知。而这也是新物理的发展方向之一,即建造希格斯粒子工厂,精确测量希格斯性质。当然,这就需要建造新的大型对撞机,中国正在推进的CEPC就是其中之一,我想很多人对此都有了解。
4、总结
参考资料:
1.http://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/ImprovedOperators/index.html
2.https://en.wikipedia.org/wiki/Anomalous_magnetic_dipole_moment
3.http://www.kepuchina.cn/2016zt/100000whys/02/201803/t20180313_557201.shtml
4.https://www.eurekalert.org/multimedia_ml/pub/12185.php
背景简介:本文作者为子乾,中国科学院高能物理研究所在读博士。本文是作者在知乎上对问题“美国费米实验室的最新 μ 子试验结果对物理学有多大颠覆?粒子的标准模型有被「推翻」的风险吗?”的回答(https://www.zhihu.com/question/453465762/answer/1832655459),作者授权风云之声在微信首发。
责任编辑:祝阳